Polyunsaturated fatty acids increase lipid radical formation induced by oxidant stress in endothelial cells.
نویسندگان
چکیده
Lipid-derived free radicals were detected by electron paramagnetic resonance (EPR) spectrometry when cultured endothelial cells attached to Cytodex beads were exposed to iron-induced oxidant stress in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). Radical adduct formation was enhanced greatly when the cells were supplemented during growth with polyunsaturated fatty acids. The largest EPR signal intensity was observed in cells enriched with docosahexaenoic acid (DHA) or eicosapentaenoic acid, but enhanced radical adduct production also occurred after exposure to arachidonic, alpha-linolenic, gamma-linolenic, or linoleic acids. Radical adduct formation increased as the DHA content of the cells increased and approached a maximum after only 6 h of exposure to DHA. Ascorbic acid, acting as a pro-oxidant, enhanced radical adduct formation in cells enriched with DHA. The EPR signal intensity was reduced when the cells were tested 6 h after replacement of the DHA-enriched medium with a medium containing 5-20 microM oleic acid, indicating that the increased endothelial responsiveness to oxidant stress is reversible. Likewise, when U937 monocytes enriched with DHA were exposed subsequently to 20 microM oleic acid, a 35-45% decrease in radical adduct formation also occurred. These findings suggest that the endothelium may become more susceptible to oxidative injury when it is exposed to elevated amounts of polyunsaturated fatty acids. However, the effect appears to be temporary. The protective action of oleic acid against oxidant stress is not confined to the endothelium; it applies to monocytes as well.
منابع مشابه
Effect of Dietary n − 3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats
The aim of this work was to determine the effect of dietary n - 3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n - 3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with...
متن کاملCell fatty acid composition affects free radical formation during lipid peroxidation.
Lipid-derived free radicals generated from intact human U937 monocytes exposed to iron-induced oxidative stress were detected by electron paramagnetic resonance (EPR) with the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). Lipid radical formation was enhanced when the cells were enriched with n-3 or n-6 polyunsaturated fatty acids. Computer simulation indicated that at least tw...
متن کاملMetabolic Effects of Polyunsaturated Fatty Acids in Chickens: A Review
Chicken has been used as a suitable model for lipid metabolism studies, because dietary modifications especially dietary fat type can change chicken body composition. Fats act as a condense source of energy and certain fatty acids such as polyunsaturated fatty acids (PUFAs) are required for both animal and human health. The n-3 PUFAs, especially, eicosapentaenoic acid (EPA) and docosahexaenoic ...
متن کاملThe effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation
Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...
متن کاملOxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy
The generation of reactive oxygen species (ROS) and an altered redox status are common biochemical aspects in cancer cells. ROS can react with the polyunsaturated fatty acids of lipid membranes and induce lipid peroxidation. The end products of lipid peroxidation, 4-hydroxynonenal (HNE), have been considered to be a second messenger of oxidative stress. Beyond ROS involvement in carcinogenesis,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 35 10 شماره
صفحات -
تاریخ انتشار 1994